Site-directed mutagenesis of glutathione S-transferase YaYa: nonessential role of histidine in catalysis.

نویسندگان

  • R W Wang
  • D J Newton
  • C B Pickett
  • A Y Lu
چکیده

A cDNA encoding a rat liver glutathione S-transferase Ya subunit has been expressed in Escherichia coli and the expressed enzyme purified to homogeneity. In order to examine the catalytic role of histidine in the glutathione S-transferase Ya homodimer, site-directed mutagenesis was used to replace all three histidine residues (at positions 8, 143, and 159) by other amino acid residues. The replacement of histidine 8 or histidine 143 with valine did not affect the 1-chloro-2,4-dinitrobenzene-conjugating activity nor the isomerase activity. However, the replacement of histidine with valine at position 159 produced the mutant GST which exhibited only partial activity. A greater decrease in catalytic activity was observed by histidine----tyrosine or histidine----lysine replacement at position 159. On the other hand, the histidine 159----asparagine mutant retained full catalytic activity. Our results indicate that histidine residues in the Ya homodimer are not essential for catalytic activity. However, histidine 159 might be critical in maintaining the proper conformation of this enzyme since replacement of this amino acid by either lysine or tyrosine did result in significant loss of enzymatic activity.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mutagenesis of residue 157 in the active site of human glyoxalase I.

Met-157 in the active site of human glyoxalase I was changed by site-directed mutagenesis into alanine, glutamine or histidine in order to evaluate its possible role in catalysis. The glyoxalase I mutants were expressed in Escherichia coli and purified on an S-hexylglutathione affinity gel. The physicochemical properties of the mutant proteins were similar to those of the wild-type enzyme. The ...

متن کامل

Structural contributions of delta class glutathione transferase active-site residues to catalysis.

GST (glutathione transferase) is a dimeric enzyme recognized for biotransformation of xenobiotics and endogenous toxic compounds. In the present study, residues forming the hydrophobic substrate-binding site (H-site) of a Delta class enzyme were investigated in detail for the first time by site-directed mutagenesis and crystallographic studies. Enzyme kinetics reveal that Tyr111 indirectly stab...

متن کامل

Site-directed Mutagenesis of Arginine 13 Residue in Human Glutathione S-Transferase P1-1

In order to study the role of residue in the active site of glutathione S-transferase (GST), Arg13 residue in human GST P1-1 was replaced with alanine, lysine and leucine by site-directed mutagenesis to obtain mutants R13A, R13K and R13L. These three mutant enzymes were expressed in Escherichia coli and purified to electrophoretic homogeneity by affinity chromatography on immobilized GSH. Mutat...

متن کامل

Characterization of the hydrophobic substrate-binding site of the bacterial beta class glutathione transferase from Proteus mirabilis.

Since their discovery, bacterial glutathione (GSH)transferases have been characterized in terms of their ability to catalyse a variety of different reactions on a large set of toxic molecules of xenobiotic or endobiotic origin. Furthermore the contribution of different residues in the GSH-binding site to GSH activation has been extensively investigated. Little is known, however, about the contr...

متن کامل

Role of histidine residues in EcoP15I DNA methyltransferase activity as probed by chemical modification and site-directed mutagenesis.

Towards understanding the catalytic mechanism of M.EcoP15I [EcoP15I MTase (DNA methyltransferase); an adenine methyltransferase], we investigated the role of histidine residues in catalysis. M.EcoP15I, when incubated with DEPC (diethyl pyrocarbonate), a histidine-specific reagent, shows a time- and concentration-dependent inactivation of methylation of DNA containing its recognition sequence of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Archives of biochemistry and biophysics

دوره 286 2  شماره 

صفحات  -

تاریخ انتشار 1991